New CAP requirements to improve MRD testing standardization

Michael A. Linden, MD, PhD
Associate Professor
Director of Hematopathology
Disclosures

• Vice-Chair, Diagnostic Immunology Resource Committee, College of American Pathologists

• Council Member, International Clinical Cytometry Society

• I receive royalties from Cell Signaling Technology, Danvers, MA, who uses technology that I created to produce monoclonal antibodies
College of American Pathologists

- Accreditation program – 7600 labs worldwide, through Checklists and peer inspections
- Proficiency testing/external quality assurance program – more than 20,000 labs worldwide subscribe to Surveys
Diagnostic Immunology Resource Committee

- Serve as CAP’s scientific and educational resource for diagnostic immunology and flow cytometry
- Multiple “dry” and “wet” proficiency testing Surveys
Hypothetical clinical encounter

- A patient with a history of plasma cell myeloma undergoes bone marrow biopsy at institution A
- The patient has a close family member who works at reference lab B
- The bone marrow aspirate is split and sent to both labs A and B for MRD testing
Flow cytometry lab A

• Your patient’s bone marrow biopsy is POSITIVE for minimal residual disease
Flow cytometry lab B

- Your patient’s bone marrow biopsy is NEGATIVE for minimal residual disease
You call down to the lab and ask the pathologist…

- Why are the results discordant?
- What are the next steps?
Some factors affecting MRD limit of detection

- Patchy disease
- Aspirate hemodilution
- Staining method (including lysis)
- Number of “colors”/antigens studied
- Number of events collected
Number of events collected affects sensitivity

- 380,000/45
- 200,000/17
- 50,000/3
Major heterogeneity in PCM flow testing

<table>
<thead>
<tr>
<th>Institution</th>
<th>Number of events acquired in MRD testing</th>
<th>Minimum number of abnormal plasma cells needed to call MRD</th>
<th>Maximum possible sensitivity, %*</th>
<th>Number of antigens studied</th>
<th>CD38+, CD138+ with monoclonal light chains</th>
<th>CD38+, CD138+, CD19−, CD45−</th>
<th>CD38+, CD138+, CD19−, CD45−, CD56−</th>
<th>CD38+, CD138+ with dim or negative CD27</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3 000 000-4 000 000</td>
<td>20</td>
<td>0.0005</td>
<td>12</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1 800 000</td>
<td>50</td>
<td>0.003</td>
<td>9</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1 000 000</td>
<td>50</td>
<td>0.005</td>
<td>8</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>500 000</td>
<td>25</td>
<td>0.005</td>
<td>6</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>500 000</td>
<td>NA</td>
<td></td>
<td>8</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>300 000-500 000</td>
<td>30-35</td>
<td>0.006</td>
<td>8</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>250 000-500 000</td>
<td>50</td>
<td>0.01</td>
<td>10</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>100 000</td>
<td>20</td>
<td>0.02</td>
<td>10</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>100 000</td>
<td>Variable†</td>
<td>NA</td>
<td>8</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Variable</td>
<td>20</td>
<td>NA</td>
<td>8</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>NA</td>
<td>30</td>
<td>NA</td>
<td>8</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>12-26</td>
<td>Do not perform MRD testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-30</td>
<td>Did not respond</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NA, not applicable.

*Maximum possible sensitivity determined by dividing the minimum number of abnormal plasma cells needed to call MRD by the number of events acquired in MRD testing (ie, a lower percentage indicates a more sensitive approach). For institutions with a range, the lowest number of minimum abnormal plasma cells needed and the highest number of events acquired were used for the calculation.

†Pathologist dependent.
College of American Pathologists (CAP) MRD Survey

- Approximately 550 labs subscribe to our flow cytometry proficiency testing Survey (wet challenge)
- In 2014 we surveyed all labs to ask if they perform MRD analysis; we had 91% of labs complete the survey
- 91 labs (18% of respondents) perform MRD for myeloma
- These labs are worldwide, but predominantly in North America
Limit of detection (LOD)

- Survey was designed to ask about what the labs perceived (or measured) analytical LOD was for myeloma MRD
- We did not ask about number of events collected, number of “colors,” etc.
- Choices included 0.1%, 0.01%, 0.001%, and other
Reported LOD among 91 labs that perform MRD testing for myeloma

While some labs report an LOD lower than 0.001%, some labs report their LOD as high as 1%!
New changes for CAP Checklist

• Two new Checklist items created to specifically address rare event flow cytometric analysis/MRD

• Goal is to help clinicians and pathologists compare results from different labs and ultimately improve standardization
New Checklist Items

Rare Event Flow Cytometric Assays

NEW 07/28/2015
FLO.30800 Rare Event Flow Cytometric Assays Phase II

For rare event flow cytometric assays, the lower limit of enumeration has been validated.

NOTE: The detection of rare events may occur in assays, such as Paroxysmal Nocturnal Hemoglobinuria (PNH) clone testing or minimal residual disease (MRD) testing. Analytic sensitivity of the lower detection limit should be validated by performing dilutional studies using known patient or suitable reference material, such as proficiency testing material.

NEW 07/28/2015
FLO.30820 Rare Event Flow Cytometric Assays Phase I

For rare event flow cytometric assays, the lower limit of enumeration is included in the diagnostic report.
Example dilutional experiment

• Bone marrow sample has a plasma cell clone comprising 10% of leukocytes.
• 10 fold dilutions would be made into normal marrow so that the expected recovery would be 1%, 0.1%, 0.01%, 0.001% and 0.0001%
• All samples stained and run in parallel to find out limit of detection
Hypothetical scenario revisited

• A patient with a history of plasma cell myeloma undergoes bone marrow biopsy at institution A
• The patient has a close family member who works at reference lab B
• The bone marrow aspirate is split and sent to both labs A and B for MRD testing
Flow cytometry lab A

- Your patient’s bone marrow biopsy is POSITIVE for minimal residual disease (the measured and reported lower limit of detection for this lab’s PCM MRD assay is 0.001%)
Flow cytometry lab B

- Your patient’s bone marrow biopsy is NEGATIVE for minimal residual disease (*the measured and reported lower limit of detection for this lab’s PCM MRD assay is 0.01%*)
Questions now answered by the provider

• Why are the results discordant? *Lab A has a more sensitive method than Lab B*
• What are the next steps? *Varies, but the main thing to remember is that:*
 – *Lab A ≠ Lab B*
Summary

• There is major heterogeneity in how the labs surveyed define MRD for PCM by flow cytometry
• Leukemia/lymphoma and MRD testing by flow cytometry are laboratory developed tests
• National and international professional organizations, as well as market pressures, will continue to encourage the field to standardize/improve
QUESTIONS?
LINDE013@UMN.EDU