Interim Analysis of the MMRF CoMMpass Trial

Identification of Novel Rearrangements Associated with Disease Initiation and Progression

On Behalf of the MMRF CoMMpass Network
What is the MMRF CoMMpass Study

Clinical parameters are collected every 3 months for a minimum of 5 years.

Clinical Assays - CD13, CD19, CD20, CD27, CD28, CD38, CD52, CD56, CD117, CD138, FGFR3, CD319
- DNA Content (DAPI)
- BRAF (V600, V601) Mutation Detection*
Project Status and Data Availability

Public Access Options: https://research.themmrf.org

dbGAP – Accession Number PHS00748
Demographics of the IA5 Cohort

<table>
<thead>
<tr>
<th>Demographic Category</th>
<th>n (%)</th>
<th>N=420</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs), median (range)</td>
<td>65</td>
<td>(19-91)</td>
</tr>
<tr>
<td>Gender - Female/Male</td>
<td>170/250</td>
<td>(40.5/59.5)</td>
</tr>
<tr>
<td>ISS Stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>144</td>
<td>(34.2)</td>
</tr>
<tr>
<td>II</td>
<td>147</td>
<td>(35.0)</td>
</tr>
<tr>
<td>III</td>
<td>130</td>
<td>(30.8)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>318</td>
<td>(75.7)</td>
</tr>
<tr>
<td>Black/African American</td>
<td>74</td>
<td>(17.6)</td>
</tr>
<tr>
<td>Others</td>
<td>28</td>
<td>(6.6)</td>
</tr>
<tr>
<td>Treatments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteasome + IMID based</td>
<td>242</td>
<td>(57.6)</td>
</tr>
<tr>
<td>bortezomib-lenalidomide-dexamethasone</td>
<td>171</td>
<td>(40.7)</td>
</tr>
<tr>
<td>Proteasome based</td>
<td>115</td>
<td>(27.4)</td>
</tr>
<tr>
<td>bortezomib-dexamethasone-cyclophosphamide</td>
<td>50</td>
<td>(11.9)</td>
</tr>
<tr>
<td>bortezomib-dexamethasone</td>
<td>48</td>
<td>(11.4)</td>
</tr>
<tr>
<td>IMID based</td>
<td>53</td>
<td>(12.6)</td>
</tr>
<tr>
<td>lenalidomide-dexamethasone</td>
<td>31</td>
<td>(7.4)</td>
</tr>
</tbody>
</table>
Comprehensive Characterization Model

Central Dogma: DNA ----> RNA ----> Protein
DNAmt ----> RNAmt ----> Proteinmt

Long-Insert Shallow Genome
Physical Coverage Median – 59x

Exome Capture High-Coverage
75 Mb Capture Median - 109x

mRNAseq
Reads/Sample Median – 189M

Median - 109x Reads/Sample
Median – 189M
Immunoglobulin Rearrangements by LI

Only chromosomes involved in a rearrangement are shown.

Common regions are zoomed

Canonical Tx are colored:
t(4;14) – Orange
t(6;14) - Purple
t(8;14) – Green
t(11;14) – Red
t(14;16) – Blue

Random partners are often part of complex canonical events (*)

The only recurrent novel partner is MAP3K14/NIK

Co-existing rearrangement partners are common (**)
Complex Balanced t(11;14)

der(14)
chr14+:chr11-
der(11)
chr11+:chr19+
der(11)
chr19-:chr14-

CCND1 -->

ZSWIM4

LOC284454
MR24-2
Simultaneous Dual IgH Translocation

MMRF_1286 – t(11;14) and t(14;20)
- Balanced t(11;14) with a 23 bp deletion between der(11) and der(14)
- Unbalanced t(14;20), with an undefined chr14 breakpoint within 200bp of t(11;14) breakpoints
Overexpression of Both Target Genes

CCND1

BCL2L1
Independent Dual IgH Translocations

- MMRF_1560 - t(4;14) and t(14;17)
 - Balanced t(4;14) dysregulating FGFR3 and WHSC1/MMSET
 - Unbalanced t(14;17) dysregulating MAP3K14/NIK
Overexpression of Both Target Genes

WHSC1 - MMSET

MAP3K14
Recurrent Fusion Partners

Only chromosomes involved in a rearrangement are shown.

Common regions are zoomed

IgH element fusions are grouped into “IgH” group

Two recurrent fusion pairs
- IgH-MMSET (n=19, 10.1%)
- IgH-MYEHOV (n=2)

Several genes are involved in multiple fusions, but with different partners
- NEDD9 (n=2)
- FCHSD2 (n=2)
- ARHGEF12 (n=2)
- CDC42BPB (TRAF3 Deletion)
- BRF1 (n=3)
- MAP3K14 (n=4)
Most Mutations are Not Expressed

Most Mutations are not detectably expressed
Frequently Mutated Genes

- Single nucleotide variants detected by WES in CoMMpass IA5 dataset:
 - There must be at least 5 reads at the position in RNAseq alignments
 - There must be at least one read with the mutant allele observed by WES in RNAseq
 - 156 Patients with Exomes
 - Significant by MutSig (**)

<table>
<thead>
<tr>
<th>N (%) - Gene</th>
<th>43 (27.6) – KRAS **</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>37 (23.7) – NRAS **</td>
</tr>
<tr>
<td></td>
<td>17 (10.9) – FAM46C **</td>
</tr>
<tr>
<td></td>
<td>15 (9.6) – DIS3 **</td>
</tr>
<tr>
<td></td>
<td>13 (8.3) – TRAF3 **</td>
</tr>
<tr>
<td></td>
<td>12 (7.7) – BRAF **</td>
</tr>
<tr>
<td></td>
<td>11 (7.1) – PRR14L</td>
</tr>
<tr>
<td></td>
<td>10 (6.4) – ACTG1</td>
</tr>
<tr>
<td></td>
<td>9 (5.8) – EGR1</td>
</tr>
<tr>
<td></td>
<td>9 (5.8) – FGFR3</td>
</tr>
<tr>
<td></td>
<td>8 (5.1) – DUSP2</td>
</tr>
<tr>
<td></td>
<td>6 (3.8) – BTG1</td>
</tr>
<tr>
<td></td>
<td>Low Frequency but Significant</td>
</tr>
<tr>
<td></td>
<td>2 (1.3) – SP140 **</td>
</tr>
<tr>
<td></td>
<td>2 (1.3) – ARID2 **</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N (%) - Gene</th>
<th>6 (3.8) – MAX **</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 (3.2) – FAM111B</td>
</tr>
<tr>
<td></td>
<td>5 (3.2) – MCAF1</td>
</tr>
<tr>
<td></td>
<td>5 (3.2) – MAGEC1</td>
</tr>
<tr>
<td></td>
<td>5 (3.2) – NFkBIA</td>
</tr>
<tr>
<td></td>
<td>5 (3.2) – SYNE2</td>
</tr>
<tr>
<td></td>
<td>5 (3.2) – NUP153</td>
</tr>
<tr>
<td></td>
<td>5 (3.2) – TGDS</td>
</tr>
</tbody>
</table>
Are All Mutations Equal?

BRAF
NM_004333

- RBD - Manually Curated...
- C1 - Manually Curated...
- Kinase - Manually Curated...
Clonal Evolution

Diagnosis \rightarrow 6x CyBorD-R \rightarrow Ld Maintenance \rightarrow Relapse (21 Months)

- New at Relapse
- Drug Resistance
- Progression

Enriched at Relapse

- UIMC1/RAP80
- BRAF
- FBXO7

Equal at both visits
- Initiating & Maintenance Events

Lost at Relapse

- ADPRM
- BHLHA15
- DTD1
- GNL3
- GPN2
- FBXO7
- HDGF
- KIAA2026
- SUB1
- TECTA
- TRPC3
- WDR90
- ZNF443

Diagnosis = 36%
Relapse = 88.8%
Structural IKZF3 in Post Len-Dex Patient

17:37,942,194–37,951,042

17:67,236,504–67,245,352

IKZF3

ABCA10

ABCA5
CoMMpass Researcher Gateway

- Enhanced ability to perform gene sets enrichment analyses
- Better analytical and statistical treatment of outcome data
- Bulk download capabilities
- Circulating Multiple Myeloma Cells (CMMC) data incorporated

https://research.themmrf.org/

Raw data is also available from dbGAP (PHS00748)
Conclusions

• The CoMMpass characterization model represents the most comprehensive characterization of the myeloma genome to date
 – The IA5 cohort containing sequencing data from 195 patients will be publically available in the new year.

• We have identified novel IgH translocations targeting MAP3K14, NFKB1, TOP1MT, APOL3, BCL2L1

• MAP3K14/NIK dysregulation occurs through IgH rearrangements and non-IgH gene fusion events in approximately 3% of patients.

• The only highly recurrent fusion transcripts are the IgH-MMSET and MMSET-IgH hybrid transcripts created by t(4;14).

• Current analyses underway to explore:
 – association between somatic events (CNA/structural/mutational/RNA) in primary tumor in patients who had early relapse.
 – association between somatic events (CNA/structural/mutational/RNA) and therapeutic response.
Acknowledgements

- CoMMpass Clinical Sites
 - Sagar Lonial

- MMRF
 - Daniel Auclair
 - Mary DeRome

- Act Oncology

- Genospace

- InStat

- Spectrum Health
 - Pamela Kidd

- Van Andel
 - Scott Jewell
 - Dan Rohrer

- TGen
 - John Carpten
 - Jonathan Keats
 - Kristi Stephenson
 - Austin Christofferson
 - Teja Yellapantula
 - David Craig
 - Ahmet Kurdoglu
 - Megan Russell
 - Jessica Aldrich
 - Winnie Liang
 - Lori Cuyugan
 - Jackie McDonald
 - Jonathan Adkins
 - Adrienne Helland