Management of Multiple Myeloma: The Changing Paradigm

Clinical Trials
Goal of Clinical Trials: Making Progress Against Myeloma

• Increase understanding of the disease
 – Improve the way we use currently available drugs
 – Identify new potential treatments

• Develop new medications that improve, and potentially lengthen, the lives of those with cancer

• No placebos!
Impact of Clinical Trials in Myeloma: Dramatic Improvements in Survival in <10 Years

- Survival rates have nearly doubled; further improvements expected in near future
- Ten new drugs approved since 2003
 - IMiDs: Thalomid, Revlimid, Pomalyst
 - Proteasome inhibitors: Velcade, Pomalyst, Ninlaro
 - Histone deacetylase inhibitor: Farydak
 - Monoclonal antibodies: Darzalex, Empliciti
 - Chemotherapy: Doxil
- Many new drugs being studied in clinical trials
- Understanding of the biology of myeloma improving, with the eventual goal of personalized medicine
Current Research Questions

• How can treatments be matched to patients’ subtypes/genomics (personalized medicine)?

• What are the best drugs and combinations of drugs for multiple myeloma at all stages of disease?
Misconceptions About Cancer Clinical Trials

<table>
<thead>
<tr>
<th>Misconceptions</th>
<th>Facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>I may get a sugar pill (placebo) instead of real therapy.</td>
<td>No placebos are given—every patient receives treatment.</td>
</tr>
<tr>
<td>I’ll be treated like a guinea pig.</td>
<td>Most patients receive care that exceeds expectations.</td>
</tr>
<tr>
<td>Clinical studies are for people with no other options.</td>
<td>Many involve an adjustment to a standard of care that may improve outcome or quality of life</td>
</tr>
</tbody>
</table>

The more people who participate, helps to speed drug development.

New Drug Development

STEP 1
Identify a target for therapy in the laboratory

STEP 2
Confirm the anticancer activity in laboratory and animal studies

STEP 3
Clinical trials (human studies) to determine safety, dosing and effectiveness
Clinical Trial Types

<table>
<thead>
<tr>
<th></th>
<th>Phase 1</th>
<th>Phase 2*</th>
<th>Phase 3†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectives</td>
<td>• Optimal dose</td>
<td>• Preliminary efficacy</td>
<td>• Definitive efficacy and safety</td>
</tr>
<tr>
<td></td>
<td>• Side effects</td>
<td>• Additional safety</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Metabolism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>• Single arm (all patients receive experimental therapy)</td>
<td>• Single arm</td>
<td>• Two arms: patients randomly assigned to an arm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Two arms of different treatments or doses: patients randomly assigned to an arm</td>
<td></td>
</tr>
<tr>
<td>Study Size</td>
<td>Small (<50)</td>
<td>Varies</td>
<td>>200</td>
</tr>
</tbody>
</table>

*When no standard treatment is available, FDA may approve drugs based on trial results
†Conducted to receive FDA approval of new drugs, in most cases
Other Types of Clinical Trials

Longitudinal Studies
- Long-term studies with a large number of patients
- The MMRF CoMMpassSM Study

Registry Studies
- Patients are treated using available therapies
- Efficacy and safety are analyzed following treatment
- Typically involve a large number of patients

Expanded Access Programs
- Allow early access to experimental therapies when no alternatives are available
Considering Entering Clinical Trials

- Talk to your doctor about your eligibility
- Meet with the research nurse to learn more
- Carefully review the informed consent paperwork
Commonly Asked Questions

- How does the study work? How often will I need to see my doctor or visit the cancer center?
- Will I need to undergo additional tests?
- What is currently known about the new drug or combination?
- What benefits can I expect?
- What side effects should I expect? Who should I notify if I have side effects?
- Can I take my vitamins or other medications?
- Can I get the treatment with my local doctor?
- Will my insurance pay for my participation in the clinical trial?
Participating in the Study

• Tell study personnel about what medications, vitamins, or dietary supplements you are taking, including the dose
• Keep a diary of any side effects you experience
• Take study medications as directed; keep days and times the same
• Keep your appointments
• Ask questions
Drugs in Development: Phase 3 Trials

<table>
<thead>
<tr>
<th>Drug</th>
<th>Administration</th>
<th>Type</th>
<th>Trials</th>
<th>Side Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pembrolizumab</td>
<td>IV</td>
<td>Monoclonal antibody</td>
<td>Newly diagnosed MM • Revlimid + dex ± pembrolizumab</td>
<td>• Myelosuppression</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RR MM • Pomalyst + dex ± pembrolizumab</td>
<td>• Pneumonia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Infection</td>
</tr>
<tr>
<td>Nivolumab</td>
<td>IV</td>
<td>Monoclonal antibody</td>
<td>RR MM • Nivolumab, Empliciti, Pomalyst, and dex</td>
<td>• TBD</td>
</tr>
<tr>
<td>Xgeva* (denosumab, AMG 162)</td>
<td>IV</td>
<td>Bone-targeted antibody</td>
<td>Newly diagnosed MM • Xgeva vs Zometa</td>
<td>• Hypocalcemia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Nausea, anemia, dyspnea, fatigue, constipation</td>
</tr>
</tbody>
</table>
Drugs in Development: Phase 2 Trials

Small Molecule Inhibitors
- Ibrutinib
- Palbociclib
- Dinaciclib
- Erismodegib
- Filanesib
- Selumetinib
- Tivantinib
- Nelfinavir
- Selinexor

Monoclonal Antibodies
- Tabalumab

Bold = treatments studied in MMRC trials
Drugs in Development: Phase 1/2 Trials

Small Molecule Inhibitors
- AT7519M
- Ricolinostat
- Romidepsin
- KW-2478
- TH-302
- Linsitinib
- KPT-8602
- Idasanutlin
- Oprozomib
- Marizomib
- VLX1570
- Veliparib

Monoclonal Antibodies
- Indatuximab
- Milatuzumab
- MOR03087

Bold = treatments studied in MMRC trials
Drugs in Development: Phase 1

<table>
<thead>
<tr>
<th>Small Molecule Inhibitors</th>
<th>Monoclonal Antibodies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afuresertib</td>
<td>Atezolizumab</td>
</tr>
<tr>
<td>Venetoclax</td>
<td>Ulocuplumab</td>
</tr>
<tr>
<td>Quisinostat</td>
<td>DFRF4539A</td>
</tr>
<tr>
<td>BMS 833923</td>
<td>Isatuximab</td>
</tr>
<tr>
<td>Ganetespib</td>
<td>Durvalumab</td>
</tr>
<tr>
<td>CB-5083</td>
<td>Lorvotuzumab mertansine</td>
</tr>
</tbody>
</table>

Bold = treatments studied in MMRC trials
Harnessing the Immune System to Fight Myeloma

Types of Immunotherapy, Immuno-Oncology

Passive

Monoclonal antibodies

- Direct effects
- Myeloma cell
- Antigen
- CDC
- C1q
- MAC

Active

Chimeric antigen receptor (CAR) T cells

1. Extract WBCs from patient
2. Modify and expand cells in lab
3. Infuse MM-targeted cells back to patient

Active

Vaccines (therapeutic, not preventive)

- Infuse MM-targeted cells back to patient
- Modify and expand cells in lab
- Extract WBCs from patient

Passive

Monoclonal antibodies

- Infuse MM-targeted cells back to patient
- Modify and expand cells in lab
- Extract WBCs from patient

Types of Immunotherapy, Immuno-Oncology

Passive

Monoclonal antibodies

- Direct effects
- Myeloma cell
- Antigen
- CDC
- C1q
- MAC

Active

Chimeric antigen receptor (CAR) T cells

1. Extract WBCs from patient
2. Modify and expand cells in lab
3. Infuse MM-targeted cells back to patient

Active

Vaccines (therapeutic, not preventive)

- Infuse MM-targeted cells back to patient
- Modify and expand cells in lab
- Extract WBCs from patient

Types of Immunotherapy, Immuno-Oncology

Passive

Monoclonal antibodies

- Direct effects
- Myeloma cell
- Antigen
- CDC
- C1q
- MAC

Active

Chimeric antigen receptor (CAR) T cells

1. Extract WBCs from patient
2. Modify and expand cells in lab
3. Infuse MM-targeted cells back to patient

Active

Vaccines (therapeutic, not preventive)

- Infuse MM-targeted cells back to patient
- Modify and expand cells in lab
- Extract WBCs from patient
Immune Cell Therapy in Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Trial</th>
<th>Patient Types</th>
<th>Study Phase</th>
<th>Site(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAR T</td>
<td>CART-19 for multiple myeloma</td>
<td>Relapsed/ refractory</td>
<td>1</td>
<td>University of Pennsylvania</td>
</tr>
<tr>
<td></td>
<td>Safety study of CAR-modified T cells targeting NKG2D-ligands</td>
<td>Relapsed/ refractory</td>
<td>1</td>
<td>Dana-Farber Cancer Institute</td>
</tr>
<tr>
<td></td>
<td>Study of T cells targeting B-cell maturation antigen (BCMA) for previously treated multiple myeloma</td>
<td>Relapsed/ refractory</td>
<td>1</td>
<td>National Cancer Institute University of Pennsylvania</td>
</tr>
<tr>
<td>MILs</td>
<td>Tadalafil and lenalidomide maintenance with or without activated marrow infiltrating lymphocytes (MILs) in high-risk myeloma</td>
<td>Newly diagnosed; relapsed (without prior ASCT)</td>
<td>2</td>
<td>Sidney Kimmel Comprehensive Cancer Center</td>
</tr>
<tr>
<td></td>
<td>Adoptive immunotherapy with activated marrow-infiltrating lymphocytes and cyclophosphamide graft-versus-host disease prophylaxis in patients with relapse of hematologic malignancies after allogeneic hematopoietic cell transplantation</td>
<td>Relapsed/ refractory</td>
<td>1</td>
<td>Sidney Kimmel Comprehensive Cancer Center</td>
</tr>
<tr>
<td>Affinity-enhanced T cells</td>
<td>Engineered autologous T cells expressing an affinity-enhanced TCR specific for NY-ESO-1 and LAGE-1</td>
<td>Relapsed/ refractory</td>
<td>1/2</td>
<td>City of Hope University of Maryland</td>
</tr>
<tr>
<td>DLI</td>
<td>CD3/CD28 activated Id-KLH primed autologous lymphocytes</td>
<td>Post-transplant</td>
<td>2</td>
<td>University of Pennsylvania</td>
</tr>
</tbody>
</table>
Therapeutic Vaccines in Development

<table>
<thead>
<tr>
<th>MM Vaccine</th>
<th>Patient Types</th>
<th>Study Phase</th>
<th>Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dendritic cell fusion vaccine + CT-011 (monoclonal antibody)</td>
<td>Post-transplant*</td>
<td>2</td>
<td>Beth Israel Deaconess Medical Center/Dana-Farber, Baylor Institute for Immunology Research (Dallas).</td>
</tr>
<tr>
<td>Hiltonol (MAGE-A3 vaccine Poly-ICLC)</td>
<td>Post-transplant*</td>
<td>2</td>
<td>University of Pennsylvania</td>
</tr>
<tr>
<td>Oncolytic measles virus (MV-NIS)</td>
<td>RR</td>
<td>1</td>
<td>Mayo Clinic (Rochester, MN)</td>
</tr>
<tr>
<td>Oncolytic measles virus (MV-NIS)</td>
<td>RR</td>
<td>2</td>
<td>University of Arkansas</td>
</tr>
<tr>
<td>PVX-410</td>
<td>SMM</td>
<td>1/2</td>
<td>Emory/Illinois Cancer Specialists/Beth Israel Deaconess Medical Center/Massachusetts General Hospital/MD Anderson Cancer Center</td>
</tr>
<tr>
<td>PVX-410</td>
<td>Post-transplant</td>
<td>2</td>
<td>Emory University</td>
</tr>
</tbody>
</table>

*Goal of eliminating any remaining cancer cells
Smoldering Multiple Myeloma: Drugs in Development

- Monoclonal antibodies are in Phase 2 trials:
 - Empliciti
 - Darzalex
 - BI-505
 - Siltuximab (CNTO328)
- Other drugs currently used for active/symptomatic myeloma are also being studied:
 - Revlimid, Phase 3
 - Kyprolis, Phase 2
Summary: Clinical Trials in Multiple Myeloma

• Clinical trials advance multiple myeloma care and speed new drug development
• No one receives a placebo
• EVERYONE who is eligible should consider participating in clinical trials
 – The more participants, the faster new treatments and new uses for existing treatments are developed

To find a clinical trial, contact the MMRF
Call 1-866-603-(MMCT) 6628
or visit www.myelomatrials.org